Features

- 4 PIN Diodes in SOT-25 Plastic Package
- Externally Selectable Bias and RF Match Network
- $5-3,000 \mathrm{MHz}$ Useable Frequency Band
- + 43 dBm IP3@ 1 GHz (50Ω)
- 1.0 dB Loss @ $1 \mathrm{GHz}(50 \Omega)$
- 30 dB Attenuation @ $1 \mathrm{GHz}(50 \Omega)$
- Lead-Free (RoHS Compliant) equivalent available with $260^{\circ} \mathrm{C}$ reflow compatibility

Description and Applications

M/A-COM's MA4P274-1225T/MA4P7455-1225T is a wideband, lower insertion loss, high IP3, Quad PIN Diode π Attenuator in a low-cost, surface mount SOT-25 package. Four PIN Diodes in one package reduce design parasitics and improve circuit density.

These devices are offered with standard $\mathrm{Sn} / \mathrm{Pb}$ plating, as well as with 100% matte Sn plating on our RoHS compliant equivalent device.

These PIN Diode Attenuators perform well where RF Signal Amplitude Control is required in 50Ω Handset Circuits and 75Ω Broadband CATV Systems. Exceptional Insertion Loss, Attenuation Range, and IP3 at <10 mA bias make these devices suitable for better power level control in RF Amplifiers.

Package Outline
(Topview)

Pin Configuration

PIN	Function	PIN	Function
1	RF In	4	Shunt 1 Bias
2	Series Bias	5	Shunt 2 Bias
3	RF Out		

Part Number	RoHs Compliant Part Number
MA4P274-1225	MA4P7455-1225
MA4P274-1225T	MA4P7455-1225T

Electrical Specifications @ +25 ${ }^{\circ} \mathrm{C}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Ct @ 0 V	100 MHz	pF		0.45	0.50
Rs @ 1 mA	100 MHz	Ω		13	18
Rs @ 10 mA	100 MHz	Ω		2.3	3.0
V_{b}	D.C.	V	125	150	
Minority Carrier Lifetime	($50 \%-90 \%$) Voltage If $=+10 \mathrm{~mA}, \mathrm{Ir}=-6 \mathrm{~mA}$ Pulse @ 100 kHz Sq Wave	nS		1000	2000
Power Dissipation	D.C. and $F=5-3,000 \mathrm{MHz}$ Derate linearly to 0 mW at 125 C Using 1,000 deg-C/W Thermal Resistance	mW			100
RF Incident Power	$\begin{aligned} & \mathrm{F}=5-3,000 \mathrm{MHz} \\ & \text { Vshunt } 1 \text { \& } 2 \text { Diode Bias }=0.75 \mathrm{~V} \\ & \text { Vseries Diode Bias }=0 \text { to } 20 \mathrm{~V} \end{aligned}$	dBm			$+20$

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information.
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

Functional Schematic

Case Style - SOT-25

Dim	Inches		Millimeters	
	Min.	Max.	Min.	Max.
A	.1103	.1181	2.80	3.10
B	.1023	.1181	2.6	3.00
C	0.0355	.0512	0.9	1.30
D	0.0591	.0669	1.5	
E	.0374 REF.		0.95 REF.	
F	.0138	.0197	.35	.50
G	.0031	0.0079	.08	0.2
H	.0002	.0059	.05	.15
J	.0138	.0216	.35	.55

Absolute Maximum Ratings ${ }^{1}$

Parameter	Absolute Maximum
Operating Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature, No Dissipated Power	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
DC Voltage at Temperature Extremes	-100 V
DC Current at $25^{\circ} \mathrm{C}$	75 mA

1. Exceeding these limits may cause permanent damage.

Please refer to Application Note M538 for surface mounting instructions.

1. Dimensions do not include mold peaks, protrusion or gate burrs which shall not exceed 0.0098 in.
(.25) mm per side.
2. Leads Coplanarity should be 0.003 (0.08) mm Max.

Typical 50Ω RF Performance @ $+25^{\circ} \mathrm{C}$ using Wide and RF Circuit Design (Values Shown include Through Loss Calibrated Out of RF Test Circuit)

Parameter	Frequency Range	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss	$5-1,000 \mathrm{MHz}$	$+3 \mathrm{~mA} /$ Series Diode and 0.75 V Shunt 1 and 2 Bias $\mathrm{F}=1 \mathrm{GHz}$	dB		-2.0	
Insertion Loss	$5-1,000 \mathrm{MHz}$	$+6.5 \mathrm{~mA} /$ Series Diode and 0.75 V Shunt 1 and 2 Bias $\mathrm{F}=1 \mathrm{GHz}$	dB		-1.0	
Return Loss	$5-1,000 \mathrm{MHz}$	$+6.5 \mathrm{~mA} /$ Series Diode and 0.75 V Shunt 1 and 2 Bias $\mathrm{F}=1 \mathrm{GHz}$	dB		-10	
Attenuation	$5-1,000 \mathrm{MHz}$	$0 \mathrm{~mA} /$ Series Diode and 0.75 V Shunt 1 and 2 Bias $\mathrm{F}=1 \mathrm{GHz}$	dB		-29	
Input IP3	$5-1,000 \mathrm{MHz}$	$0 \mathrm{~mA} /$ Series Diode and 0.75 V Shunt 1 and 2 Bias $\mathrm{F} 1=1000 \mathrm{MHz}, \mathrm{F} 2=1100 \mathrm{MHz}$	dBm		43	
Input IP3	$5-1,000 \mathrm{MHz}$	$+6.5 \mathrm{~mA} /$ Series Diode and 0.75 V Shunt 1 and 2 Bias $\mathrm{F} 1=1000 \mathrm{MHz}, \mathrm{F} 2=1100 \mathrm{MHz}$	dBm		43	
Input IP3	$5-1,000 \mathrm{MHz}$	0 mA / Series Diode and 0.75 V Shunt 1 and 2 Bias $\mathrm{F} 1=100 \mathrm{MHz}, \mathrm{F} 2=110 \mathrm{MHz}$	dBm		43	
Input IP3	$5-1,000 \mathrm{MHz}$	$+6.5 \mathrm{~mA} /$ Series Diode and 0.75 V Shunt 1 and 2 Bias $\mathrm{F} 1=100 \mathrm{MHz}, F 2=110 \mathrm{MHz}$	dBm		33	
Settling Time	$5-1,000 \mathrm{MHz}$	Within 1 dB of Final Attenuation Value $\mathrm{F}=1 \mathrm{GHz}$	uS		3	
RF C.W. Incident Power	$5-1,000 \mathrm{MHz}$	$0-20 \mathrm{~V}$ Series Diode Bias and 0.75 V Shunt 1 and 2 Bias	dBm		+ 20	

Typical 75Ω RF Performance @ $+25^{\circ} \mathrm{C}$ using Wide and RF Circuit Design (Values Shown include Through Loss Calibrated Out of RF Test Circuit)

Parameter	Frequency Range	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss	$5-1,000 \mathrm{MHz}$	$+2 \mathrm{~mA} /$ Series Diode and 1.0 V Shunt 1 and 2 Bias $\mathrm{F}=1 \mathrm{GHz}$	dB		-1.1	
Insertion Loss	$5-1,000 \mathrm{MHz}$	+4.5 mA / Series Diode and 1.0 V Shunt 1 and 2 Bias $\mathrm{F}=1 \mathrm{GHz}$	dB		-0.6	
Attenuation	$5-1,000 \mathrm{MHz}$	0 mA / Series Diode and 1 V Shunt 1 and 2 Bias $\mathrm{F}=1 \mathrm{GHz}$	dB		-27	
Return Loss	$5-1,000 \mathrm{MHz}$	+ $4.5 \mathrm{~mA} /$ Series Diode and 1.0 V Shunt 1 and 2 Bias $\mathrm{F}=1 \mathrm{GHz}$	dB		-10	

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

Typical Performance Curves

Diode Ct vs Frequency @ 0 V

Diode Rs vs I

Typical Performance Curves

Attenuation vs Frequency in 50 Ohms, Shunt Bias $=0.75$ V

Return Loss vs Frequency in 50 Ohms, Shunt Bias $=0.75 \mathrm{~V}$

Typical Performance Curves

IP3 vs Series Voltage, Vshunt = . 075 V

Insertion Loss vs Frequency in 75 Ohms, Shunt Bias $=1 \mathrm{~V}$

Frequency (MHz)

Typical Performance Curves

Attenuation vs Frequency in 75 Ohms, Shunt Bias $=1$ V

5-1,000 MHz Wideband RF Circuit

Note: Keeping PIN 4 \& PIN 5 as Separate Bias Points (Same V) reduces RF leakage (increases attenuation) through an otherwise connected Common Anode Bias Node.

5-1,000 MHz Wideband RF Circuit Parts List

Item	Supplier	Supplier P/N
$\begin{gathered} 4003 \text { or } 4350 \text { Circuit Board } \\ 4003\left(\varepsilon_{r}=3.38\right), 4350\left(\varepsilon_{r}=3.48\right) \end{gathered}$	Rogers Corporation www.rogers-corp.com	RO4003, RO4350
Capacitor, 10 K pF $3.2 \mathrm{~mm} \mathrm{~L} \times 1.6 \mathrm{~mm} \mathrm{~W} \times 1.15 \mathrm{~mm} \mathrm{H}$	Murata www.murata.com	GRM42-6COH103K25PB
$\begin{gathered} \text { Resistor, } 1 \mathrm{~K} \Omega \\ 1.0 \mathrm{~mm} \mathrm{~L} \times 0.5 \mathrm{~mm} \mathrm{w} \times 0.25 \mathrm{~mm} \mathrm{H} \end{gathered}$	Piconics www.piconics.com	C1001BC42KSA

Quad PIN Diode π Attenuator

Series and Shunt Diode Bias Currents as a Function of Vseries and Vshunt Voltage Using Wideband RF Circuit (Values shown are PER DIODE)

Vshunt Bias (V)	Vseries Bias (V)	Iseries Diode (mA)	Ishunt Diode (mA)
0.75	0	0.000	0.192
0.75	1	0.106	0.120
0.75	2	0.443	0.048
0.75	3	0.773	0
0.75	4	1.099	0
0.75	5	1.426	0
0.75	6	1.750	0
0.75	7	2.092	0
0.75	8	2.424	0
0.75	9	2.756	0
0.75	10	3.088	0
0.75	11	3.421	0
0.75	12	3.754	0
0.75	13	4.087	0
0.75	14	4.410	0
0.75	15	4.743	0
0.75	16	5.081	0
0.75	17	5.406	0
0.75	18	5.750	0
0.75	19	6.079	0
0.75	20	6.413	0

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

1-3 GHz 50Ω, Higher Frequency, Lower Tuning Voltage RF Circuit

Note: Keeping PIN 4 \& PIN 5 as Separate Bias Points (Same V) reduces RF leakage through an otherwise connected Common Anode Bias Node.

1-3 GHz Higher Frequency RF Circuit Parts List

Item	Supplier	Supplier P/N
$\begin{gathered} 4003 \text { or } 4350 \text { Circuit Board } \\ 4003\left(\varepsilon_{r}=3.38\right), 4350\left(\varepsilon_{r}=3.48\right) \end{gathered}$	Rogers Corporation www.rogers-corp.com	RO4003, RO4350
Capacitor, .01 uF, Power Supply Filter $1.6 \mathrm{~mm} \mathrm{~L} \times 0.80 \mathrm{~mm} \mathrm{~W} \times .080 \mathrm{~mm} \mathrm{H}$	Murata www.murata.com	GRM39X7R104K25PB
Capacitor, 680 pF , Diode RF Bypass $2.0 \mathrm{~mm} \mathrm{~L} \times 1.5 \mathrm{~mm}$ W x .085 mm H	Murata	GRM40COG681K50PB
Capacitor, 56 pF, D.C. Block, RF Decoupling $1.0 \mathrm{~mm} \mathrm{~L} \times 0.5 \mathrm{~mm} \mathrm{~W} \times 0.5 \mathrm{~mm} \mathrm{H}$	Murata	GRM36COG560K50PB
Inductor, 22 nH , RF Choke	Coilcraft www.coilcraft.com	1812SMS-22NJ
$\begin{gathered} \text { Resistor, } 100 \Omega \\ 1.0 \mathrm{~mm} \mathrm{~L} \times 0.5 \mathrm{~mm} \times 0.25 \mathrm{~mm} \mathrm{H} \end{gathered}$	Piconics www.piconics.com	C1001BC42KSA
$\begin{gathered} \text { Resistor, } 180 \Omega \\ 1.0 \mathrm{~mm} \mathrm{~L} \times 0.5 \mathrm{~mm} \times 0.25 \mathrm{~mm} \mathrm{H} \end{gathered}$	Piconics	C1800BC42KSA
$\begin{gathered} \text { Resistor, } 330 \Omega \\ 1.0 \mathrm{~mm} \mathrm{~L} \times 0.5 \mathrm{~mm} \times 0.25 \mathrm{~mm} \mathrm{H} \end{gathered}$	Piconics	C3300BC42KSA
$\begin{gathered} \text { Resistor, } 1 \mathrm{~K} \Omega \\ 1.0 \mathrm{~mm} \mathrm{~L} \times 0.5 \mathrm{~mm} \times 0.25 \mathrm{~mm} \mathrm{H} \end{gathered}$	Piconics	C1001BC42KSA

Lumped Model of SOT-25, PIN Diode π Quad Attenuator

SPICE MODEL

Pin Diode Model
NLPINM2
Is=1E-14 A
Vi=0 V
Un=900 cm ${ }^{2} / \mathrm{V}$-sec
$\mathrm{Wi}=60 \mathrm{um}$
$\mathrm{Rr}=1.25 \mathrm{Ohm}$
$\mathrm{Cmin}=0.20 \mathrm{pF}$
Tau=1.0 usec
Rs=0.1 Ohm
Cjo=0.27 pF
$\mathrm{Vj}=0.7 \mathrm{~V}$
$\mathrm{M}=0.5$
$\mathrm{Fc}=0.5$
Imax=2.5E+6 A/m ${ }^{2}$
$\mathrm{Kf}=0$
Af=1
$\mathrm{Ffe}=1$
$w B V=150 \mathrm{~V}$

